
Experiment Board V1.0

2022

SHIELD #1
SCOTT CARD

NORTHSHORE-INNOVATION.CA

1 | P a g e

Digital Analog

I/O Scratch Arduino Shield I/O Scratch Arduino Shield

Output Digital
10

DIG12 D2 (GREEN) Output Analog 6 DIG6
(PWM)

D5 (BLUE)

Output Digital
11

DIG11 D3 (YELLOW) Output Analog 9 DIG9
(PWM)

D8 (Infrared diode)

Output Digital
12

DIG10 D1 (RED) Input Analog IN
0

AN_IN0 RV1 (Potentiometer)

Input Digital 2 DIG2 B2 (TOP) Input Analog IN
1

AN_IN1 Q2 (Infrared
receiver)

Input Digital 3 DIG3 B1
(BOTTOM)

Input Analog IN
2

AN_IN2 U1 (Temperature
Sensor)

2 | P a g e

Contents
Getting Started .. 3

Foreword- What is Scratch for Arduino(S4A)?.. 3

Before plugging the Arduino ... 3

In the Kit .. 4

What is included ... 4

What you will need ... 4

How the experiments work. ... 4

Introduction to Scratch ... 5

1st Project -Hello world for Hardware ... 7

2nd Project -The switch .. 8

3rd Project -The Conditional Loop ... 9

4th Project -Bright Light! .. 10

5th Project -What temperature is it? ... 11

6th Project -The better timer ... 13

7th Project -Traffic Light ... 15

Continue With or Without Scratch ... 17

Glossary ... 18

Notes: .. 19

3 | P a g e

Getting Started

Foreword- What is Scratch for Arduino(S4A)?
Scratch is a programming language that uses visual blocks to create code. Developed by MIT to educate

school-aged children, it has become a valuable tool in schools throughout the world.

The Arduino is a family of development boards that allows users to produce projects and learn the

hardware aspect of computer science quickly and reliably. With a limited number of inputs, outputs,

communication protocols, this low-cost option is a great entry point to embedded processors. The

Arduino programming language is a modified version of C++ with many built in libraries.

S4A was developed to allow students to interact with the Arduino using the same Scratch programming

format, thereby avoiding the need to learn higher level programming languages.

Meant to complement Scratch and the Arduino, this experiment board will allow the user to interact with

the processor and the physical world in a controlled manner. Experiments are designed to show the

different aspects of the embedded processor as they discover digital, analog, inputs, outputs, and

programming methods.

Once finished the experiments, the Arduino and Scratch can be used to interface with other devices or

used with the experiment board to create new projects. The Experiment board may also be used directly

with the Arduino and programmed using the Arduino Integrated Design Environment (IDE).

Before plugging the Arduino
The Arduino (or clone) requires a driver to work on the computer. The first step is to install the driver,

then the various programs required, including the Arduino IDE.

NOTE: Skipping this step may permanently destroy your hardware!

1. Driver

a. Elegoo NANO driver

b. Uno FTDI driver (usually does not need a manual driver install)

2. Arduino IDE

a. Windows

b. Mac OS X

3. S4A

a. Windows

b. Mac OS X

4. Supplying your own Arduino or refreshing an existing.

a. http://s4a.cat/

http://69.195.111.207/tutorial-download/?t=Nano3.0
https://ftdichip.com/drivers/
https://downloads.arduino.cc/arduino-1.8.19-windows.exe
https://downloads.arduino.cc/arduino-1.8.19-macosx.zip
http://s4a.cat/downloads/S4A16.zip
http://s4a.cat/downloads/S4A16.dmg

4 | P a g e

In the Kit

What is included
Development board with one of the following:

• Header (Provide your own Arduino)

• Arduino Nano (ELEGOO)

• Arduino UNO

• Kit for assembly (Arduino not included)

What you will need

• USB cable

• Windows PC or MAC

How the experiments work.
Each experiment is intended to learn a new concept. Each concept may require 2 or more new tools to be

learned. Mistakes when learning to program are inevitable but, learning to troubleshoot them is a

valuable tool and can be more beneficial than a flawless execution of the instructions. That said, when

first discovering new concepts, it is important to have early and frequent success. If an experiment does

not work, step back and worth through the steps to look for any mistakes.

As the experiments progress, they become more difficult and rely on tools learned in the previous

examples. For this reason, it is not suggested to do the experiments out of order.

To perform the experiment, create the code using the blocks exactly as shown in each step. The result of

each block will be described and tested as we go. Once the experiment is done, feel free to experiment

with the code.

For younger student, guidance or separate learning plan may be required, depending on the level being

taught to. Caution must be taken not to frustrate the learner and it is critical that the first projects are

successful to prevent them from feeling overwhelmed.

Math concepts, such as the conversions required by the Analog to Digital Converter (ADC) will most likely

be too advanced for most students. However, it is a necessary procedure to allow the user to get access

to the sensors.

Enjoy the adventure!

5 | P a g e

Introduction to Scratch
Scratch uses Code Blocks to build a program as opposed to a text-based language. This makes the

introduction of codding easy for novices as there is no need to worry about context and structure. Simply

pull in the block you want, snap them together in the correct order and run the program to see the results.

Made a mistake? No problem! Trouble shooting is the best learning tool and will teach valuable lessons

itself. Feel free to use this section as a reference while codding.

Launching Scratch for Arduino

Once Scratch for Arduino has been installed and configured (See: Before

plugging the Arduino) you can access the program by searching programs in your

START menu (Windows Key). Type S4A in the start menu for a shortcut!

Modules

There are 8 modules within S4A, each with its own set of commands.

They are grouped into relevant command types. Feel free to

experiment with each of them by selecting the tabs shown here. Note

that the colours of the tabs match the colour of the commands. This

will help you navigate the instructions for the experiments.

Commands

Selecting a command or instruction is as simple

as click and hold the item you want. Next drag

it to the program space (canvas) and release.

Notice that the blocks have key shapes allowing

them to snap together. Some blocks must be

used at the beginning, the end or within other

blocks.

Pull Downs and Variable Fields

Many of the command that S4A use to interact with the

outside world will have editable fields. These may select

the pin, like the pull down shown here for Digital 10~13.

It can also be used for setting a value as shown for Analog

9 which has a value of 255.

Duplicating

Once a code block or section of code is created, it is possible to

copy it for reuse. Simply right click on the block and select

duplicate. Selection may also include variables, values,

operators, or code within a loop.

Deleting Code

Made a mistake or have unneeded code? Deleting code blocks or sections of code is as easy as dragging

them back off the canvas. Any code that is not attached to the set of commands with a beginning will be

ignored.

Feel free to experiment

with these!

6 | P a g e

Nesting instructions

Many instructions, especially

the arithmetic functions, will

require code blocks to inside

other code blocks. For

example, setting a variable to

a mathematical equation or

multiple math functions being

performed on the same

variable. Each function acts as

a bracketed operation.

*Note: that the order of operations is dependent on the structure, not the rules of algebra.

𝑀𝑦𝑉𝑎𝑟1 = (𝑥 + 𝑦) × 𝑧

𝑀𝑦𝑉𝑎𝑟2 = 𝑥 + (𝑦 × 𝑧)

Running the Code

Once you are ready to test or run your code, simply follow the instructions of the start block. For example:

click the start or press the start key.

Stopping the Code

If there is no return (like in a forever loop) the code will terminate on its own. If there is a loop, clicking on

the start block will stop the program and the hardware will remain in its current state.

Saving Code

At any time, feel free to save your code. This is a great way to ensure that you can

recover your file should the program crash. It is also good to keep your files as a

reference for the future use.

Opening Saved Code

Once a file has been saved or you wish to

open an example file, use the File>Open…

and choose the desired file. If files are sored

in a different directory, you may navigate

from the default as well as creating your own.

7 | P a g e

1st Project -Hello world for Hardware
Step #1. Turn on an LED

What is an LED?

An LED is a Light Emitting Diode. When a

voltage is applied (in the right direction)

it will light up. LED are used everywhere

today for many things. This is the symbol

for an LED. The GREEN LED should now be lit.

Step #2. Turn an LED on then off

What are states?

In electronics we say that digital has only two states, on or

off (1 or 0). This means that we if we set a signal to 1 it is

referred to a high or on. When we set it to 0 is if low or off.

It is important in this experiment to add a wait command

to allow us to see the LED is

on. Without the delay, the led

turn off too fast for us to see

it!

Step #3. Make a Loop

What is the Loop?

A loop is a statement that tells the program to repeat a

part of the code. The forever loop will continue to do the

instructions inside the command until the program is

stopped. This code will make the GREEN LED tun on and

off.

Try to change the values of the wait command to see what

happens.

8 | P a g e

2nd Project -The switch
Step #1 Digital input using if/else

Input and Output?

Input refers to information going onto the computer. In

this case the information is provided by button and is

either on or off (1 or 0). The output for our project is the

LED and can be either on or off (1 or 0).

In this code, the state of the output can also be reversed,

so that the LED is on when the button is not pushed and

off when it is.

Step #2 Latch using IF

What is a latch?

A latch condition is when a state is set by a signal until

some other signal is given. In this case when button B1 is

pushed the LED will turn on, and remain on, until button

B2 is pushed.

In this case, we have created an ON/OFF switch. You can

see that the light will turn on, and stay on, until the

command to turn it off is made.

1

1 https://www.automationdirect.com/adc/overview/catalog/pushbuttons_-z-_switches_-z-_indicators/start_-z-
_stop_combo_control_stations

9 | P a g e

3rd Project -The Conditional Loop
Step #1 Conditional loop

There are several types of conditional loops in coding. Two

that are available in Scratch are Repeat [n] and Repeat

until <n>. In this example we will use the repeat loop. The

value given will determine how many times the

instructions will be repeated. In this example the green

LED will turn on and off 10 times

Not all conditions need to be physical. The signal could be

a value, like a counter, or even the passing of time.

Try adding the wait command to unlatch the LED from

Project #2. This will give you practice saving, opening, and

closing files. You can also Save As with a modified file name.

Step #2

For an added challenge, combine project #2 and #3 and

add a flashing LED before turning it off. This example is like

what you may see at a cross walk!

*Note: The preconditioning of the output states before

beginning the main loop. This is good programming

practice as it sets all the variable to a known state.

10 | P a g e

4th Project -Bright Light!
Step #1 Operators

Operators are arithmetic functions within the code that

may include addition (+), subtraction (-), multiplication (*),

and division (/) as well are round, and more complicated

operations. They also include comparisons such as greater

than (>), less than (<), and equal to. Boolean operations

(such as: and, or, and not) are also available but not

covered in these experiments.

Step #2 Analog input (potentiometer)

What is analog?

As we saw with the switch experiment, digital is either on or

off (1 or 0). But analog signal is between on and off. They are

often used to measure values that that have a range

(minimum and maximum) and are often in a unit call a volt.

The computer converts this voltage to a digital signal. In the

case of the project, the voltage ranges from 0 to 5 volts and

that is represented as 0 to 1023.

Adjust the potentiometer (Analog Input) to see the value

change.

Step #3 Analog output (LED)

In this experiment, we read the value of the potentiometer

and change the value so it can be sent to the LED. The value

must be an integer between 0 and 255 but the analog read

can be 0-1023. Therefore, we round the result of the

analog read divided by five.

2

2 https://media.digikey.com/Photos/Adafruit%20Industries%20LLC/MFG_3990.jpg

11 | P a g e

5th Project -What temperature is it?
Step #1 Sensors

 Sensors are devices that allow the computer to sense the

environment around them. Some are as simple as a button

but could also include: light, temperature, movement,

direction, sound, conductivity, or almost anything

imaginable.

Many Sensors used are analog devices with output an

analog signal that is related to the level being sensed. This

means for a temperature sensor, as the temperature

increases, so does the output voltage. Provided on the

development board is a temperature sensor. The output

of this sensor is connected to Analog 2.

*NOTE: the formula to convert temperature [in °C] to the

output voltage is:

𝑉𝑂𝑈𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[°𝐶] ∗ 0.01 + 0.5

3

3 https://media.digikey.com/Renders/~~Pkg.Case%20or%20Series/TO-92-3(StandardBody),TO-
226_straightlead.jpg

=

12 | P a g e

Step #2 Variable

Variables can be thought of as a place to store a value. This

variable can be passed from one function to another as

well as be stored or displayed. To create a variable, select

Make a variable then give it a logical name. One technique

programmers use is call Cammel case. This uses capital

letters to separate words.

For example: myFirstVariable

Math

Computers are the ideal tool for doing math, as a matter

of fact, that is why they were invented! We can do simple

math or more complicated calculations as needed. In the

case below, we convert the voltage (represented as an

ADC value of Analog 2) into a meaningful unit –

temperature, in °C.

*Note: Be care full to nest the operations correctly! There are a lot of them.

If the checkbox is enabled next to the variable you

created, you will now be able to see your value. Typical

room temperature will be about 20°C. If this value is not

close, check the formula above.

Once you are sure the sensor is operating correctly, feel

free to gently touch the sensor to even pinch it with your

fingers. You will notice that the temperature increases and

will go back down once you let go.

13 | P a g e

6th Project -The better timer
Step #1 The Problem

Modern computers are capable of doing many things at

the same time, but simple machines only have a single core

to perform its instructions. This means that if you instruct

the processor to wait, it will stop and can do no other

functions.

In this example, we can see that the LED will turn on and

off when the buttons are pushed. However, the second

LED also turns on and off every two seconds.

During the flashing of the LED, notice that the button press

will have no effect.

*HINT: For this project, try loading project #2 as a starter

file. Be sure to do a →File → Save as so you do not

overwrite your work.

Step #2 The Timer

Most processors have something called a timer. This is a

clock that will continue to run in the background,

regardless of what else is happening. Scratch is supplied

with one timer that we can use.

The timer will count the number of seconds and can be

measured in fractions of a second. By using an if statement

and a comparison operators (<=>) to evaluate the timer

value.

Once the timer has expired, it is important to reset it to

zero if it is to be cyclic or astable multivibrator. The timer

can also be used as a one-time event or monostable.

Use this code to replace the wait section of your project.

Note that the button functions now work almost

immediately.

14 | P a g e

Step #3 The Subroutine

When programs become more complicated or you have several things at can happen at the same time,

programmers use subroutines. A subroutine is a dependent piece of code that can be called from many

different sources (saving space) and makes your code easier to read.

In this project, we have created several sub

routines that are called from the main forever

loop dependent on the time. The fist is before

the time reaches 1 second, which sets the green

LED on. Once the timer is grater than 1 second,

the second sub routine is call which turn off the

LED. Once the timer has exceeded 2 seconds,

the timer is reset in the main loop. This could

also happen in a sub routine.

These are simple subroutines with a single

function however, they could have more

complicated set of instructions, like the next

example.

Step #4 Boolean operations

The final if statement uses a logic called Boolean. This is a digital concept where we have a yes or no, on

or off, 1 or 0 state. At its most time we can check the status of a bit. For example, is Digital2 on? We also

can check the opposite by using the not. In our project we are using an if statement to check if either

button is push. Once in the subroutine, we can determine if both are pushed or either one. Depending on

the condition of the buttons, different actions may be taken.

*Note: that the pressing of the button does not interfere with the LED flashing or vice versa. It is also

noteworthy that the stop script is added to the one subroutine. This will stop the script from preforming

the rest of the operation.

*Bonus: This combination of OR and AND is called an XOR or exclusive

OR. The inverse is called an XNOR.

Start

?

Input

Sub.

Return
Sub.

Do

something

Do

something

15 | P a g e

7th Project -Traffic Light
Step #1 Photo interrupter

Not all light is visible by people. Many devices, like TV

remotes, use a beam of invisible light to communicate. In

this example we are turning on the Infrared led and

measuring the result on the receiver.

Step #2 Add car sprite?

Scratch is capable of graphics and user interfaces. One

such tool is the use of sprites. New sprites can be loaded

from other sources, created, or loaded from the library.

For this experiment, load an existing sprite from the

Transportation directory. Chose the vehicle that best suits

you!

Step #3 Program Car Sprite Routines

We will now create three sub routines: one for when the program is

initiated, one for the car at the stop light, and one for the car leaving.

The values in the glide command represent the sprites’ location on the

screen and the secs determines how long it will take to travel there.

These may be modified to personalize the project.

*Bonus: Text and sounds can be added using the

looks and sounds icons. Feel free to experiment with

these tools!

Step #4 Return to Main Strite

Once finished moving the car and adding any other features you wish,

return to the Arduino sprite by clicking on the icon.

16 | P a g e

Step #5 Main Sprite Program with Subroutines

In the main program, we start by

initializing the system.

Broadcasting “Init” will place our

sprite off the screen, we turn on

the IR LED, and turn off all of the

visible LEDs.

We then enter our forever loop.

This is called the main loop in

conventional programming and is

where the program should stay.

We set the blue led to mirror the

IR receiver to help visualize what

is happening. Place a finger

between the transmitter and

receiver and you will see that the

LED becomes brighter.

The first if statement determines if the IR beam is broken. This would

indicate that a car is in the intersection. We now call the sub routine to

move the car into location. Once it has moved, we call the subroutine to

turn the green light on as well as turn off any other traffic lights.

We now come to the wait command. The program will halt here until

the car moves. Remove your finger and the car will pull away. Note that

this is called “blocking code” and is usually frowned upon by

programmers as it prevents other functions from occurring.

Once the intersection is cleared, car drives off and then is reset to its

home location. The timer is reset, and the program now leaves the first

if command.

The next if statements evaluates if the timer is between 1 and two

seconds. If true, the sub routine for the yellow light is called. If the timer

is greater than two seconds, the red-light subroutine is called by the next

if statement. These two if statements are not blocking commands. This

means that if at any time a vehicle comes into the intersection, the

program will abort the process in favor of the green light routine.4

4 http://4.bp.blogspot.com/-4R6Xkz9OPOg/UsUKBxN1zpI/AAAAAAAAFGk/kbHfCcXdXS8/s1600/658-traffic-light-
design.png

17 | P a g e

Continue With or Without Scratch
Now that we have experience with Scratch, we can continue to develop our own project using our

imagination. The Arduino however is powerful and capable of many more functions. The Development

board may be used with the Arduino in its native ecosystem called the Arduino IDE. This is a free software

that will allow programming is C++ without restrictions that Scratch may impose. Many spare pins are

available using the various headers to which the user may interface. Have fun exploring the full potential

of the development board and Arduino!

18 | P a g e

Glossary
Command Description Variable(s) type

When clicked Run the program when clicked .. None

When [n] key pressed Run the program when key pressed......................... [A-Z, 0-9 or arrow]

When Arduino 1 clicked Run the program when the sprite is clicked None

Waid [n] seconds Stop the program for n seconds [Positive real number]

Forever .. Will repeat code inside continuously .. None

Repeat [n] Will repeat the code n time [Positive Integer]

Broadcast [n] Used to trigger external code *see: When I receive

Broadcast [n] and wait Trigger external code but will hold [subroutine name]

When I receive [n] Used to identify external code [subroutine name]

Forever if <n>5 Combines the Forever and If statement........ < Comparison or Sensor>

If<n> .. Checks the condition of the statement < Comparison or Sensor>

If<n>else If the statement is true A, otherwise B < Comparison or Sensor>

Wait until <n> Will stop the program until a condition < Comparison or Sensor>

Repeat until<n> Will repeat until a condition is met < Comparison or Sensor>

Stop script Will end a program or sub-program .. None
Stop all .. Well halt all routines ... None

Value of sensor [Analog n] Reads the value of the analog input n. [Analog 0~5, Digital 2~3]

Sensor [Digital n] pressed Reads the input of digital n. ... [Digital 2~3]

Digital [n] on Set the digital output n on. ... [10~13]

Digital [n] off Set the Digital output n off. .. [10~13]

Move[n] .. Instantly move sprite forward ... [Integer]

Turn[n] .. Rotate sprite .. [Integer]

Point in Direction[n] Point sprite in cardinal direction [0, 90, 180, -90]

Point towards[n] Point sprite towards another sprite [User defined]

Go to x: [x]y: [y] Instantly move sprite to a location [Integer, integer]

Go to[n] .. Instantly move a sprite to another sprite’s location [user defined]

Glide[n]secs to x: [x]y: [y] Will move a sprite to a location over time [Rational, int., int.]

5 Forever If is no longer supported in Scratch and therefore should be avoided.

19 | P a g e

(x) + (y) ... Will use the result of x + y (Rational number)

(x) - (y) .. Will use the result of x - y .. (Rational number)

(x) * (y) ... Will use the result of x × y (Rational number)

(x) / (y) .. Will use the result of x ÷ y (Rational number)

(x) < (y) ... Comparison operator x less than y (Rational number)

(x) = (y) ... Comparison operator x equal to y (Rational number)

(x) > (y) ... Comparison operator x greater than y (Rational number)

(x) and (y) Boolean operation && ... < Digital 2~3 >

(x) or (y) .. Boolean operation || .. < Digital 2~3 >

not(x) .. Boolean operation !x .. < Digital 2~3 >

Make a variable Dialog to make a variable name [variable name]
Delete a variable Dialog to remove variables ... [variable name]

☒(n) ... When checked, the variable n appears *see: Make Variable

Set[n] to [x] Used to set a variable n to x value [name, real number]

Change[n] by [x] Increment or decrement n by x [name, real number]

Show variable [n] Will display the current value of n [variable name]

Hide variable [n] Will hide the current value of n [variable name]

Make a List Create a list for look-up Not covered in this module

Sound, Sensing, Looks, and Pen all follow standard Scratch programming and are not covered in this

version.

Notes:
• Nested if statements may not function in this version.

